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Introduction

Figure: Example of Part of Temporal Knowledge
Graph.

▶ In practice, data change over time.

▶ Reasoning problem on Temporal
Knowledge Graph (TKG) can viewed in
two settings:

– Interpolation which focusing on
completing the missing links at past
timestamps.

– Extrapolation which focusing on
forecasting future facts.

⇒ We mainly focus on interpolation setting.
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Challenges

General, when compared to extrapolation, interpolation setting is more easier, but still faces
many challengs:

▶ The flexibility of these models is limited;

▶ Not utilizing temporal information to improve the quality of learning embedding during
model training;

▶ The connection between relations and the timestamps attached to them has not been fully
exploited.
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Our contributions

▶ We propose MPComplEx, a novel temporal knowledge graph completion model using
tensor decomposition and weighted feature combination.

▶ MPComplEx introduces entity-specific weights and controlled temporal embeddings to
capture multiple time perspectives.

▶ Modelling relation-timestamp correlation via a dot product, enhancing relational
embedding quality.

▶ Experiments on benchmark datasets show significant improvements in link prediction.
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Basic Notations

▶ Temporal knowledge graph G = {Q, E ,R, T }
▶ A quadruplet is denoted as (s, r, o, t).

We focus on TKGC tasks which often considered as predicting missing entities in a given data
set like (s, r, ?, t) where ? denotes the missing element.

Backgrounds 7



Low-Rank Decomposition

Given a tensor X ∈ Rn1×n2×n3 . let ai ∈ Rn1 , bi ∈ Rn2 , and ci ∈ Rn3 represent the component
vectors of a rank-one tensor, and let R > 0 denote the rank of the CP decomposition. The CP
decomposition can be expressed as follows:

∀(i, j, k),Xi,j,k ≈
R∑

r=1

ai,r ◦ bj,r ◦ ck,r = ⟨ai, bj , ck⟩ (1)

Figure: The visualization of Canonical polyadic (CP) decomposition on three-way tensor.
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Previous TKG Interpolation models

Model Score function Simultaneousness Aggregation Associativity

TTransE ∥Cs +Cr +Ct −Co∥ x x x

HyTE ∥Pt(Cs) + Pt(Cr)− Pt(Co)∥ x x x

TeRo ∥Cs ◦Ct +Cr −Co ◦Ct∥ x x

RotatQVS ∥CsCt
−1 +Cr −CtCo

−1∥ x x

TA-DistMult ⟨Cs, LSTM([Cr;Ct
seq]),Co⟩ x x x

TComplEx Re
(
⟨Cs,Cr,Co,Ct⟩

)
x x x

TimePlex ⟨Cs,Cr
SO,Co⟩+ α⟨Cs,Cr

ST ,Ct⟩ x

ChronoR ⟨Cs ◦ [Cr|Ct|Co]⟩ x x

ST-ConvKB contact (g([Cs : Cr : Ct] ∗ Ω)) ·w x x

TPComplEx Re (⟨Cs +Ct2,Cr,Co +Ct3,Ct1⟩)
MPComplEx (Ours) Re

(〈
Cst2 , Crc, Cot3 , Ct1

〉)
Table: Comparison of Temporal Knowledge Graph Models
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Baseline models: TComplEx and TPComplEx

TComplEx score function can be formulated as follows:

ϕ(s, r, o, t) = Re
(〈
Cs, Cr, Co, Ct

〉)
, (2)

where ϕ() denotes the scoring function, Re(.) returns the real vector component for input
embedding; Cs, Cr, Co, Ct ∈ R2×d denotes the complex embedding with embedding rank d for
subject, relation, object, and timestamp, respectively.
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Baseline models: TComplEx and TPComplEx

TPComplEx score function can be formulated as follows:

ϕ(s, r, o, t) = Re
(〈
Cs + Ct2 , Cr, Co + Ct3 , Ct1

〉)
, (3)

where Ct1 is the temporal embedding, and Ct2 , Ct3 are additional temporal embedding for
subject and object, respectively.
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Control score function

Let α1, α2 ∈ R+ ∪ {0} and β1, β2 ∈ R+ ∪ {0}. We apply these variable for subject and object
embedding, respectively. Consequently, the TPComplEx score function becomes:

ϕ1(s, r, o, t) = ϕbase(s, r, o, t) +Gt2
r (Ct2)

+Gt3
r (Ct3) +Gt4

r (Ct4),
(4)

where ϕbase(s, r, o, t) = Re
(〈
α1Cs, Cr, β1Co, Ct1

〉)
, Ct1 represents the temporal embedding,

while Ct2 , Ct3 , Ct4 denote additional temporal embeddings.
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Control score function

Then, we define Ct2 , Ct3 as:

Gt2
r (Ct2) = Re

(〈
Cr, Co, Ct1 , α2Ct2

〉)
, (5)

Gt3
r (Ct3) = Re

(〈
Cs, Cr, Ct1 , β2Ct3

〉)
. (6)

And Ct4 :
Gt4

r (Ct4) = Re
(〈
Cr, Ct1 , α2Ct2 , β2Ct3

〉)
. (7)

Thus, we obtain a new score function, which is defined as:

ϕ1(s, r, o, t) = ϕbase(s, r, o, t)

+ Re
(〈
Cr, β1Co, Ct1 , α2Ct2

〉)
+ Re

(〈
α1Cs, Cr, Ct1 , β2Ct3

〉)
+ Re

(〈
Cr, Ct1 , α2Ct2 , β2Ct3

〉) (8)

Simplifying the above expression, we have:

ϕ1(s, r, o, t) = Re
(〈
Cst2 , Cr, Cot3 , Ct1

〉)
, (9)

where Cst2 = α1Cs + α2Ct2 , Cot3 = β1Co + β2Ct3 .
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Define relation-time interactions

We define relation-time interactions as dot product:

Crt = ⟨Cr, Ct⟩ (10)

Then, replace Cr by Cr, we obtain:

ϕ2(s, r, o, t) = ϕbase(s, r, o, t) +Gt2
r (α2Ct2)

+Gt3
r (β2Ct3) +Gt4

r (Ct4).
(11)

By expanding the above score function similar to Eq. 8, we have the score function when using
relation-time context embedding as follows:

ϕ2(s, r, o, t) = Re
(〈
Cst2 , Crt, Cot3 , Ct1

〉)
, (12)
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Fusion score function

By combining the weighted score functions from Eq. 12 and Eq. 9, we derive a more
generalized score function, which is formulated as follows:

ϕ(s, r, o, t) = ϕ1(s, r, o, t) + (1− γ)ϕ2(s, r, o, t)

= Re
(〈
Cst2 , Crc, Cot3 , Ct1

〉)
,

(13)

where the combined embedding Crc is defined as Crc = γCr + (1− γ)Crt. Here, γ is the
weight factor that balances the percentage of features of the relation derived from Cr and the
relation-time context embedding Crt.
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Loss function

We compute the instantaneous multi-class loss for each training quadruple (s, r, o, t) as follows:

L = −ϕ(s, r, o, t) + log

∑
o′ ̸=o
o′∈E

exp (ϕ(s, r, o′, t))

 , (14)

where ϕ(.) represents the score function. In addition, we include a regularization term, Lreg.
Therefore, the final loss function used for training is given by:

Ltotal = L+ Lreg. (15)
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Regularization

Similarly to TPComplEx [3], our model incorporates entities with temporal bias into the
regularization process and adopts N3 regularization as defined by [10]. The regularization
function is expressed as:

Lreg = λ1

(
∥Cst2∥

3
3 + ∥Crc∥33 + ∥Cot3∥

3
3

)
+ λ2 ∥Ct∥33 , (16)

where λ1 and λ2 are the regularization weights for the entity-relation and temporal
embeddings, respectively.
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Datasets and Baselines

▶ Baselines.: TTransE [12]; TComplEx, TNTComplEx [10]; TimePlex [9]; ChronoR [7];
TeLM [8]; BTDG [6]; TBDRI [5]; SANe [1]; MTComplEx [4]; TPComplEx [3];
MvTuckER [2].

▶ Datasets. ICEWS14, ICEWS05-15, YAGO15k [11], and GDELT [13].
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Performance Comparision

Model
MRR ↑ Hit@1 ↑ Hit@10 ↑ MRR ↑ Hit@1 ↑ Hit@10 ↑

ICEWS14 ICEWS05-15

TTransE [12] 0.255 0.074 0.601 0.271 0.084 0.616
TComplEx [10] 0.610 0.530 0.770 0.660 0.590 0.800
ChronoR [7] 0.625 0.547 0.773 0.675 0.596 0.820
TeLM [8] 0.625 0.545 0.774 0.678 0.599 0.823
BTDG [6] 0.601 0.516 0.753 0.627 0.534 0.798
TBDRI [5] 0.652 0.552 0.785 0.709 0.646 0.821
SANe [1] 0.638 0.558 0.782 0.683 0.605 0.823
MTComplEx [4] 0.629 0.548 0.782 0.675 0.592 0.822
TPComplEx [3] 0.898 0.865 0.954 0.845 0.794 0.934
MvTuckER [2] 0.654 0.577 0.797 0.698 0.618 0.841

MPComplEx (Ours) 0.941 0.931 0.957 0.962 0.957 0.974

APG (%) ↑ 4.30 6.60 0.30 11.70 16.30 4.00
RPG (%) ↑ 4.79 7.63 0.31 11.48 17.38 2.78
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Performance Comparision

Model
MRR ↑ Hit@1 ↑ Hit@10 ↑ MRR ↑ Hit@1 ↑ Hit@10 ↑

YAGO15k GDELT

TTransE [12] 0.321 0.230 0.510 0.115 0.000 0.318
TComplEx [10] 0.360 0.280 0.540 0.298 0.213 0.464
ChronoR [7] 0.366 0.292 0.538 - - -
TBDRI [5] 0.368 0.301 0.554 0.269 0.164 0.441
SANe [1] - - - 0.301 0.212 0.476
TPComplEx [3] 0.689 0.651 0.762 0.407 0.329 0.559
MvTuckER [2] - - - 0.549 0.477 0.682

MPComplEx (Ours) 0.904 0.899 0.914 0.676 0.630 0.762

APG (%) ↑ 21.50 24.80 15.20 26.90 30.1 20.30
RPG (%) ↑ 31.20 38.10 19.95 66.09 91.49 36.31
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Computational Complexity

Table: Model parameters and embedding ranks for our baselines and proposed models.

Models Parameters ICEWS14 ICEWS05-15 YAGO15k GDELT

ComplEx 2d(|E|+ 2|R|) 1820 860 1960 3820
TComplEx 2d(|E|+ |T |+ 2|R|) 1740 1360 1940 2270
TPComplEx 2d(|E|+ 3|T |+ 2|R|) 1594 886 1892 1256
MPComplEx 2d(|E|+ 3|T |+ 2|R|) 1500 800 1500 1200

Experiments 24



Analysis of the effects of relation-time context features

Table: The influence of relation-time context features on the datasets.

Case study
MRR ↑ Hit@1 ↑ Hit@10 ↑ MRR ↑ Hit@1 ↑ Hit@10 ↑

ICEWS14 ICEWS05-15

Only relation-time 0.923 0.912 0.940 0.930 0.920 0.948
W/o relation-time 0.920 0.910 0.940 0.946 0.939 0.963
Fusion features 0.941 0.931 0.957 0.962 0.957 0.974

YAGO15k GDELT

Only relation-time 0.794 0.774 0.834 0.719 0.680 0.793
W/o relation-time 0.774 0.752 0.815 0.719 0.680 0.793
Fusion features 0.904 0.899 0.914 0.676 0.630 0.762
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Analysis of the effects of weight combinations

Figure: Visualization of the effect of α1, α2, β1, β2, γ for MPComplEx on the ICEWS14, ICEWS05-15,
YAGO15k, and GDELT datasets.
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Conclusion and Future Directions

▶ Introduces a Multi-Time Perspective Relation-Time Context ComplEx Embedding model.

▶ Enhances flexibility with adjustable temporal embeddings.

▶ Maintains computational efficiency with a fixed parameter count.

▶ Integrates relation-timestamp correlations into the scoring function.

▶ Improves relation embeddings and prediction accuracy.

▶ Future work: exploring cross-temporal patterns and extrapolation challenges.
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Thanks for your attention
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