ICAART 2025 17th International Conference on Agents and Artificial Intelligence Porto, Portugal, 23-25 Feb 2025

Improving Temporal Knowledge Graph Completion via Tensor Decomposition with Relation-Time Context and Multi-Time Perspective

Nam Le^{1,2,3}, Thanh Le^{1,2,3}, and Bac Le^{1,2,3}

¹Department of Computer Science ²Faculty of Information Technology, University of Science, Ho Chi Minh City, Vietnam ³Vietnam National University, Ho Chi Minh City, Vietnam

February 24, 2025

Outline

Introduction

Backgrounds

Related works

Proposed Model

Baselines models Fusing relation-time contex

Relation-time interactions

Fusion score function

Optimization

Experiments

Experiment Setting Performance Comparision Computational Complexity Ablation Study

Conclusion and Future Directions

Introduction

Introduction

Figure: Example of Part of Temporal Knowledge Graph.

- In practice, data change over time.
- Reasoning problem on Temporal Knowledge Graph (TKG) can viewed in two settings:
 - Interpolation which focusing on completing the missing links at past timestamps.
 - Extrapolation which focusing on forecasting future facts.
- \Rightarrow We mainly focus on interpolation setting.

Introduction

Challenges

General, when compared to extrapolation, interpolation setting is more easier, but still faces many challengs:

- The flexibility of these models is limited;
- Not utilizing temporal information to improve the quality of learning embedding during model training;
- The connection between relations and the timestamps attached to them has not been fully exploited.

Our contributions

- We propose MPComplEx, a novel temporal knowledge graph completion model using tensor decomposition and weighted feature combination.
- MPComplEx introduces entity-specific weights and controlled temporal embeddings to capture multiple time perspectives.
- Modelling relation-timestamp correlation via a dot product, enhancing relational embedding quality.
- Experiments on benchmark datasets show significant improvements in link prediction.

Outline

Introduction

Backgrounds

Related works

Proposed Model

- Baselines models
- Fusing relation-time context and time properties
- Relation-time interactions
- Fusion score function
- Optimization

Experiments

- Experiment Setting Performance Comparision Computational Complexity Ablation Study
- Conclusion and Future Directions

Backgrounds

Basic Notations

- ▶ Temporal knowledge graph $G = \{Q, E, R, T\}$
- A quadruplet is denoted as (s, r, o, t).

We focus on TKGC tasks which often considered as predicting missing entities in a given data set like (s, r, ?, t) where ? denotes the missing element.

Low-Rank Decomposition

Given a tensor $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$. let $a_i \in \mathbb{R}^{n_1}$, $b_i \in \mathbb{R}^{n_2}$, and $c_i \in \mathbb{R}^{n_3}$ represent the component vectors of a rank-one tensor, and let R > 0 denote the rank of the CP decomposition. The CP decomposition can be expressed as follows:

$$\forall (i,j,k), \mathcal{X}_{i,j,k} \approx \sum_{r=1}^{R} a_{i,r} \circ b_{j,r} \circ c_{k,r} = \langle a_i, b_j, c_k \rangle \tag{1}$$

Figure: The visualization of Canonical polyadic (CP) decomposition on three-way tensor.

Backgrounds

Outline

Introduction

Backgrounds

Related works

Proposed Model

Baselines models Fusing relation-time context and time properties Relation-time interactions Fusion score function Optimization

Experiments

Experiment Setting Performance Comparision Computational Complexity Ablation Study

Conclusion and Future Directions

Related works

Previous TKG Interpolation models

Model	Score function	Simultaneousness	Aggregation	Associativity
TTransE	$\ \mathbf{C_s} + \mathbf{C_r} + \mathbf{C_t} - \mathbf{C_o}\ $	x	×	×
HyTE	$\ P_t(\mathbf{C_s}) + P_t(\mathbf{C_r}) - P_t(\mathbf{C_o})\ $	x	×	×
TeRo	$\ \mathbf{C_s}\circ\mathbf{C_t}+\mathbf{C_r}-\mathbf{C_o}\circ\mathbf{C_t}\ $	\checkmark	×	×
RotatQVS	$\ \mathbf{C_sC_t}^{-1} + \mathbf{C_r} - \mathbf{C_tC_o}^{-1}\ $	\checkmark	×	×
TA-DistMult	$\langle \mathbf{C_s}, LSTM([\mathbf{C_r}; \mathbf{C_t}^{seq}]), \mathbf{C_o} \rangle$	×	×	×
TComplEx	$Re\left(\langle \mathbf{C_s}, \mathbf{C_r}, \overline{\mathbf{C_o}}, \mathbf{C_t} ight angle$	×	×	×
TimePlex	$\langle \mathbf{C_s}, \mathbf{C_r}^{SO}, \mathbf{C_o} \rangle + \alpha \langle \mathbf{C_s}, \mathbf{C_r}^{ST}, \mathbf{C_t} \rangle$	\checkmark	\checkmark	×
ChronoR	$\langle \mathbf{C_s} \circ [\mathbf{C_r} \mathbf{C_t} \mathbf{C_o}] angle$	\checkmark	×	x
ST-ConvKB	$contact\left(g([\mathbf{C_s}:\mathbf{C_r}:\mathbf{C_t}]*\Omega)\right)\cdot\mathbf{w}$	\checkmark	×	×
TPComplEx	$Re\left(\langle \mathbf{C_s} + \mathbf{C_{t2}}, \mathbf{C_r}, \mathbf{C_o} + \mathbf{C_{t3}}, \mathbf{C_{t1}}\rangle\right)$	\checkmark	\checkmark	\checkmark
MPComplEx (Ours)	$Re\left(\left\langle C_{st_2}, C_{rc}, \overline{C_{ot_3}}, C_{t_1} \right angle ight)$	\checkmark	\checkmark	\checkmark

Table: Comparison of Temporal Knowledge Graph Models

Outline

Introduction Backgrounds

Related works

Proposed Model

Baselines models Fusing relation-time context and time propert Relation-time interactions Fusion score function Optimization

Experiments

- Experiment Setting Performance Comparision Computational Complexity Ablation Study
- Conclusion and Future Directions

Proposed Model

Baseline models: TComplEx and TPComplEx

TComplEx score function can be formulated as follows:

$$\phi(s, r, o, t) = \mathsf{Re}\left(\left\langle C_s, C_r, \overline{C_o}, C_t \right\rangle\right),\tag{2}$$

where $\phi()$ denotes the scoring function, Re(.) returns the real vector component for input embedding; $C_s, C_r, C_o, C_t \in \mathbb{R}^{2 \times d}$ denotes the complex embedding with embedding rank d for subject, relation, object, and timestamp, respectively.

Baseline models: TComplEx and TPComplEx

TPComplEx score function can be formulated as follows:

$$\phi(s, r, o, t) = \operatorname{\mathsf{Re}}\left(\left\langle C_s + C_{t_2}, C_r, \overline{C_o + C_{t_3}}, C_{t_1}\right\rangle\right),\tag{3}$$

where C_{t_1} is the temporal embedding, and C_{t_2}, C_{t_3} are additional temporal embedding for subject and object, respectively.

Control score function

Let $\alpha_1, \alpha_2 \in \mathbb{R}^+ \cup \{0\}$ and $\beta_1, \beta_2 \in \mathbb{R}^+ \cup \{0\}$. We apply these variable for subject and object embedding, respectively. Consequently, the TPComplEx score function becomes:

$$\phi_1(s, r, o, t) = \phi_{\mathsf{base}}(s, r, o, t) + G_r^{t_2}(C_{t_2}) + G_r^{t_3}(C_{t_3}) + G_r^{t_4}(C_{t_4}),$$
(4)

where $\phi_{\text{base}}(s, r, o, t) = \text{Re}\left(\left\langle \alpha_1 C_s, C_r, \beta_1 \overline{C_o}, C_{t_1} \right\rangle\right)$, C_{t_1} represents the temporal embedding, while $C_{t_2}, C_{t_3}, C_{t_4}$ denote additional temporal embeddings.

Control score function

Then, we define C_{t_2}, C_{t_3} as:

$$G_r^{t_2}(C_{t_2}) = \mathsf{Re}\left(\left\langle C_r, \overline{C_o}, C_{t_1}, \alpha_2 C_{t_2} \right\rangle\right),\tag{5}$$

$$G_r^{t_3}(C_{t_3}) = \mathsf{Re}\left(\left\langle C_s, C_r, C_{t_1}, \beta_2 \overline{C_{t_3}} \right\rangle\right).$$
(6)

And C_{t_4} :

$$G_r^{t_4}(C_{t_4}) = \mathsf{Re}\left(\left\langle C_r, C_{t_1}, \alpha_2 C_{t_2}, \beta_2 \overline{C_{t_3}} \right\rangle\right).$$
(7)

Thus, we obtain a new score function, which is defined as:

$$\phi_{1}(s, r, o, t) = \phi_{\text{base}}(s, r, o, t) + \operatorname{Re}\left(\langle C_{r}, \beta_{1}\overline{C_{o}}, C_{t_{1}}, \alpha_{2}C_{t_{2}}\rangle\right) + \operatorname{Re}\left(\langle \alpha_{1}C_{s}, C_{r}, C_{t_{1}}, \beta_{2}\overline{C_{t_{3}}}\rangle\right) + \operatorname{Re}\left(\langle C_{r}, C_{t_{1}}, \alpha_{2}C_{t_{2}}, \beta_{2}\overline{C_{t_{3}}}\rangle\right)$$
(8)

Simplifying the above expression, we have:

$$\phi_1(s, r, o, t) = \mathsf{Re}\left(\left\langle C_{st_2}, C_r, \overline{C_{ot_3}}, C_{t_1}\right\rangle\right),\tag{9}$$

where $C_{st_2} = \alpha_1 C_s + \alpha_2 C_{t_2}$, $C_{ot_3} = \beta_1 C_o + \beta_2 C_{t_3}$. Proposed Model

15

Define relation-time interactions

We define relation-time interactions as dot product:

$$C_{rt} = \langle C_r, C_t \rangle \tag{10}$$

Then, replace C_r by C_r , we obtain:

$$\phi_2(s, r, o, t) = \phi_{\mathsf{base}}(s, r, o, t) + G_r^{t_2}(\alpha_2 C_{t_2}) + G_r^{t_3}(\beta_2 C_{t_3}) + G_r^{t_4}(C_{t_4}).$$
(11)

By expanding the above score function similar to Eq. 8, we have the score function when using relation-time context embedding as follows:

$$\phi_2(s, r, o, t) = \mathsf{Re}\left(\left\langle C_{st_2}, C_{rt}, \overline{C_{ot_3}}, C_{t_1}\right\rangle\right),\tag{12}$$

Proposed Model

Fusion score function

By combining the weighted score functions from Eq. 12 and Eq. 9, we derive a more generalized score function, which is formulated as follows:

$$\phi(s, r, o, t) = \phi_1(s, r, o, t) + (1 - \gamma)\phi_2(s, r, o, t)$$

= Re (\langle C_{st_2}, C_{rc}, \overline{C_{ot_3}}, C_{t_1} \rangle), (13)

where the combined embedding C_{rc} is defined as $C_{rc} = \gamma C_r + (1 - \gamma)C_{rt}$. Here, γ is the weight factor that balances the percentage of features of the relation derived from C_r and the relation-time context embedding C_{rt} .

Loss function

We compute the instantaneous multi-class loss for each training quadruple (s, r, o, t) as follows:

$$\mathcal{L} = -\phi(s, r, o, t) + \log \left[\sum_{\substack{o' \neq o \\ o' \in \mathcal{E}}} \exp\left(\phi(s, r, o', t)\right) \right],$$
(14)

where $\phi(.)$ represents the score function. In addition, we include a regularization term, \mathcal{L}_{reg} . Therefore, the final loss function used for training is given by:

$$\mathcal{L}_{\text{total}} = \mathcal{L} + \mathcal{L}_{reg}.$$
 (15)

Proposed Model

Regularization

Similarly to TPComplEx [3], our model incorporates entities with temporal bias into the regularization process and adopts N3 regularization as defined by [10]. The regularization function is expressed as:

$$\mathcal{L}_{reg} = \lambda_1 \left(\|C_{st_2}\|_3^3 + \|C_{rc}\|_3^3 + \|C_{ot_3}\|_3^3 \right) + \lambda_2 \|C_t\|_3^3,$$
(16)

where λ_1 and λ_2 are the regularization weights for the entity-relation and temporal embeddings, respectively.

Outline

- Experiments
 - Experiment Setting Performance Comparision Computational Complexity Ablation Study
- Conclusion and Future Directions

Experiments

Datasets and Baselines

 Baselines.: TTransE [12]; TComplEx, TNTComplEx [10]; TimePlex [9]; ChronoR [7]; TeLM [8]; BTDG [6]; TBDRI [5]; SANe [1]; MTComplEx [4]; TPComplEx [3]; MvTuckER [2].

Datasets. ICEWS14, ICEWS05-15, YAGO15k [11], and GDELT [13].

Performance Comparision

Model	$MRR\uparrow$	Hit@1 \uparrow	Hit@10 \uparrow	$MRR \uparrow$	$Hit@1\uparrow$	Hit@10 ↑	
	ICEWS14				ICEWS05-15		
TTransE [12]	0.255	0.074	0.601	0.271	0.084	0.616	
TComplEx [10]	0.610	0.530	0.770	0.660	0.590	0.800	
ChronoR [7]	0.625	0.547	0.773	0.675	0.596	0.820	
TeLM [8]	0.625	0.545	0.774	0.678	0.599	0.823	
BTDG [6]	0.601	0.516	0.753	0.627	0.534	0.798	
TBDRI [5]	0.652	0.552	0.785	0.709	0.646	0.821	
SANe [1]	0.638	0.558	0.782	0.683	0.605	0.823	
MTComplEx [4]	0.629	0.548	0.782	0.675	0.592	0.822	
TPComplEx [3]	<u>0.898</u>	0.865	<u>0.954</u>	<u>0.845</u>	0.794	0.934	
MvTuckER [2]	0.654	0.577	0.797	0.698	0.618	0.841	
MPComplEx (Ours)	0.941	0.931	0.957	0.962	0.957	0.974	
APG (%) ↑	4.30	6.60	0.30	11.70	16.30	4.00	
RPG (%) ↑	4.79	7.63	0.31	11.48	17.38	2.78	

Performance Comparision

Model	$MRR\uparrow$	Hit@1 \uparrow	Hit@10 ↑	$MRR\uparrow$	Hit@1 \uparrow	Hit@10 \uparrow	
	YAGO15k				GDELT		
TTransE [12]	0.321	0.230	0.510	0.115	0.000	0.318	
TComplEx [10]	0.360	0.280	0.540	0.298	0.213	0.464	
ChronoR [7]	0.366	0.292	0.538	-	-	-	
TBDRI [5]	0.368	0.301	0.554	0.269	0.164	0.441	
SANe [1]	-	-	-	0.301	0.212	0.476	
TPComplEx [3]	0.689	0.651	0.762	0.407	0.329	0.559	
MvTuckER [2]	-	-	-	0.549	0.477	0.682	
MPComplEx (Ours)	0.904	0.899	0.914	0.676	0.630	0.762	
APG (%) ↑ RPG (%) ↑	21.50 31.20	24.80 38.10	15.20 19.95	26.90 66.09	30.1 91.49	20.30 36.31	

Computational Complexity

Table: Model parameters and embedding ranks for our baselines and proposed models.

Models	Parameters	ICEWS14	ICEWS05-15	YAGO15k	GDELT
ComplEx	$2d(\mathcal{E} +2 \mathcal{R})$	1820	860	1960	3820
TComplEx	$2d(\mathcal{E} + T + 2 \mathcal{R})$	1740	1360	1940	2270
TPComplEx	$2d(\mathcal{E} +3 \mathcal{T} +2 \mathcal{R})$	1594	886	1892	1256
MPComplEx	$2d(\mathcal{E} +3 \mathcal{T} +2 \mathcal{R})$	1500	800	1500	1200

Analysis of the effects of relation-time context features

Case study	$MRR\uparrow$	Hit@1 \uparrow	Hit@10 \uparrow	$MRR\uparrow$	Hit@1 \uparrow	Hit@10 \uparrow	
	ICEWS14				ICEWS05-15		
Only relation-time	0.923	0.912	0.940	0.930	0.920	0.948	
W/o relation-time	0.920	0.910	0.940	0.946	0.939	0.963	
Fusion features	0.941	0.931	0.957	0.962	0.957	0.974	
		YAGO15	<		GDELT		
Only relation-time	0.794	0.774	0.834	0.719	0.680	0.793	
W/o relation-time	0.774	0.752	0.815	0.719	0.680	0.793	
Fusion features	0.904	0.899	0.914	0.676	0.630	0.762	

Table: The influence of relation-time context features on the datasets.

Experiments

Analysis of the effects of weight combinations

Outline

Conclusion and Future Directions

Conclusion and Future Directions

Conclusion and Future Directions

- Introduces a Multi-Time Perspective Relation-Time Context ComplEx Embedding model.
- Enhances flexibility with adjustable temporal embeddings.
- Maintains computational efficiency with a fixed parameter count.
- Integrates relation-timestamp correlations into the scoring function.
- Improves relation embeddings and prediction accuracy.
- Future work: exploring cross-temporal patterns and extrapolation challenges.

Thanks for your attention

References I

- Yancong Li et al. "SANe: Space adaptation network for temporal knowledge graph completion". In: *Information Sciences* 667 (2024), p. 120430.
- [2] Hao Wang et al. "MvTuckER: Multi-view knowledge graphs representation learning based on tensor tucker model". In: Information Fusion 106 (2024), p. 102249.
- [3] Jinfa Yang et al. "Tensor decompositions for temporal knowledge graph completion with time perspective". In: *Expert Systems with Applications* 237 (2024), p. 121267.
- [4] Fu Zhang et al. "Joint framework for tensor decomposition-based temporal knowledge graph completion". In: Information Sciences 654 (2024), p. 119853.
- [5] Mei Yu et al. "TBDRI: block decomposition based on relational interaction for temporal knowledge graph completion". In: *Applied Intelligence* 53.5 (2023), pp. 5072–5084.
- Yujing Lai et al. "Block term decomposition with distinct time granularities for temporal knowledge graph completion". In: *Expert Systems with Applications* 201 (2022), p. 117036.

Conclusion and Future Directions

References II

- [7] Ali Sadeghian et al. "Chronor: Rotation based temporal knowledge graph embedding". In: Proceedings of the AAAI conference on artificial intelligence. 2021, pp. 6471–6479.
- [8] Chengjin Xu et al. "Temporal knowledge graph completion using a linear temporal regularizer and multivector embeddings". In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021, pp. 2569–2578.
- [9] Prachi Jain, Sushant Rathi, Soumen Chakrabarti, et al. "Temporal Knowledge Base Completion: New Algorithms and Evaluation Protocols". In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020, pp. 3733–3747.
- [10] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. "Tensor Decompositions for Temporal Knowledge Base Completion". In: International Conference on Learning Representations. 2019.

References III

- [11] Alberto García-Durán, Sebastijan Dumancic, and Mathias Niepert. "Learning Sequence Encoders for Temporal Knowledge Graph Completion". In: Conference on Empirical Methods in Natural Language Processing. 2018.
- [12] Julien Leblay and Melisachew Wudage Chekol. "Deriving Validity Time in Knowledge Graph". In: Companion Proceedings of the The Web Conference 2018 (2018).
- [13] Rakshit Trivedi et al. "Know-evolve: Deep temporal reasoning for dynamic knowledge graphs". In: *international conference on machine learning*. PMLR. 2017, pp. 3462–3471.